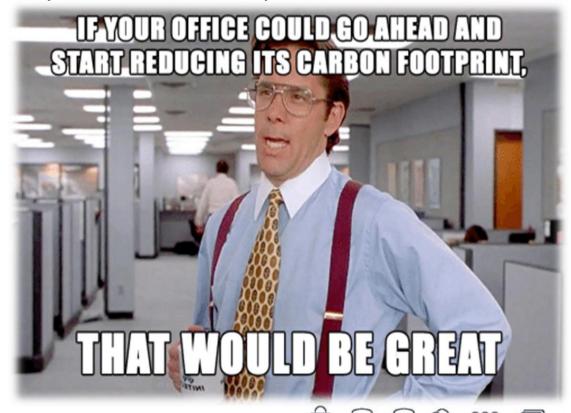
We Make Information Useful.

Carbon Emissions Captured on the Frontlines: A Use Case for Standardizing Carbon Emissions Data

Integrity Management: A New Hope



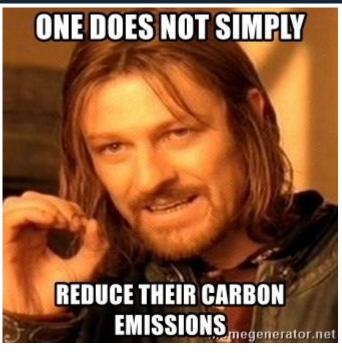
Under pressure from the organization to look for Carbon Footprint (CF) reducing opportunities, various departments began looking for carbon saving projects. The Fabric Maintenance department at a large offshore operator contacted Sullexis, asking us to identify options for CF reduction with the paint used extensively in corrective & preventive

maintenance

What we found

- Container sizes varied from 1 quart to 55 gallon
- No standard measurement for Carbon Footprint
- Most of the supply chain outsourced

Here's The Thing About Reducing Carbon Footprint



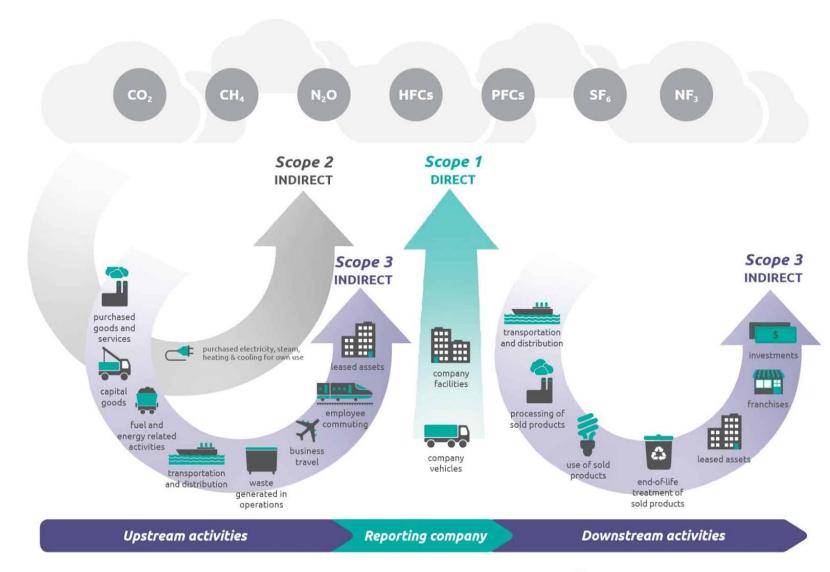
Factors outside operators sphere of influence

- Raw material acquisition
- Paint manufacturing practices
- Container manufacturing practices
- Shipping & transportation outsourced

Factors within operators sphere of influence

- Maintenance plans
 - Gallons of paint per shipment
 - Number of shipments per platform
- Paint container types
 - Plastic
 - Low carbon steel
 - Recirculated steel

Biting Off More Than You Can Chew



Upstream

- Raw Materials
- Manufacturing
 - **Paint**
 - **Containers**
- Transportation
 - Trucking
 - Shipping

Downstream

Disposal & Recovery

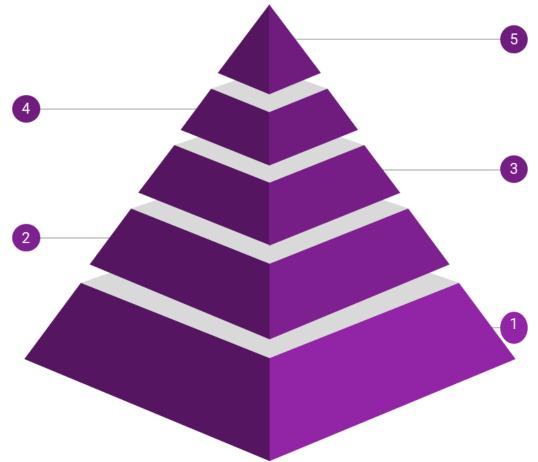
The Problem: Getting Too Deep in the Weeds

A full Life Cycle Analysis (LCA) of the paint cans would involve:

- Shipping data
 - 3rd party
- Raw material usage: amounts mined per container, associated equipment
- Raw earth costs: Impact of mining
- Transportation: shipping from source to destination
 - multiple countries
 - multiple companies
- Disposal impact : solid waste, runoff

Total Cost of LCA would be prohibitive for a single department.... Must Limit Scope!

Estimating Carbon Footprint - A Bottom-Up Approach



Validate Against Known Actuals

Validated with a 3rd party specializing in LCA studies

Investigate: What can we observe

- **Number of Containers**
- Weight of a single container
- Container material types
- Production Impact (KgCO2e/kg) of a single container

Expressing The Results

- Multiple iterations with client
- Used base "savings" to further estimate
 - Savings from recycled metal
 - Savings from stainless steel

Putting It Together

- Determined yearly impact of each container
- Compared to a projected impact of 55-gallon containers
- Quantified "savings"
- Quantified savings/dollar spent

Limit Scope - What do we

know

- Client has no standard metric for C.F.
- LCA Study would be too expensive
- Client is only interested in what they can control
- Client only has shipping data
- Targeting 55 gallon drums (metal or plastic)

What the Client Gave Us

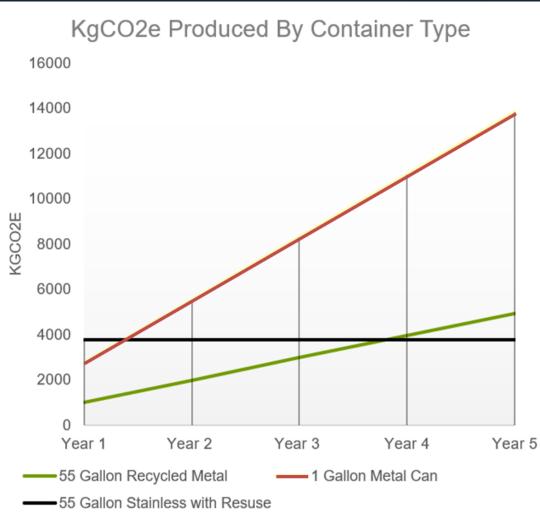
Client provided

- Container Shipping data from 2019
 - Count broken down by product and type
 - Sizes [1 gal, 5 qt, 55 gallon, 5, gallon...]
 - Type [plastic, metal]
 - All sourced from individual suppliers

Product Purchased	container_typ e	Quantity	Product Category
Product 1	Plastic Sulzer Cartridge	75	Cat A
Product 2	Plastic Sulzer Cartridge	19	Cat B
Product 3	1 Quart Metal Paint Can	264	Cat C

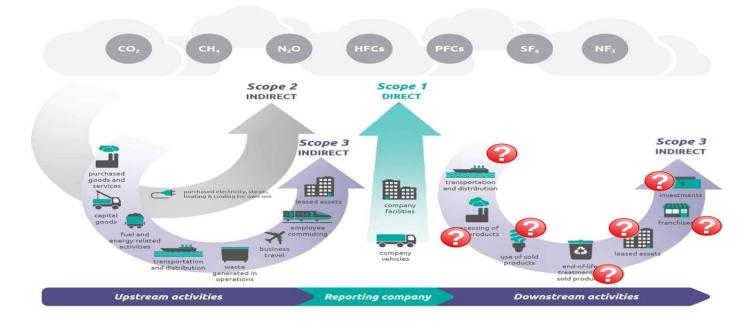
Google provided

- Standard metrics to measure Carbon Footprint
- Average weights of materials


Container Name	KgCO2e/lb	Material Type	Weight (lbs)
1 Gallon Metal Can	0.743892371	Metal	0.89
1 Gallon Plastic Jug	1.206557139	Plastic (HDPE)	0.31
55 Gallon Metal Drum:	0.743892371	Metal	48
55 Gallon Plasitic Drum	1.206557139	Plastic (HDPE)	22

Analysis Summary

- Over the next 5 years, assuming the same volume of paint used, the following amounts of CO2e would be produced by the paint containers:
 - 1-gallon can = 14,000 Kg
 - 55-gallon single use recycled steel drum = 5,000 Kg
 - 55-gallon stainless steel recyclable = 4,000 Kg
- Using recycled steel drums significantly reduces CO2e for the first 5 years at a lower price point than stainless steel:
 - 55-gallon single use recycled steel drum = \$0.03/KgCO2
 - 55-gallon stainless steel recyclable = \$0.30/KgCO2



The Challenges – Scaling

- Before we can save, we must learn how to scale
- Tons saved from 1 process improvement in a sub-section of 1 department:
 - 10 metric tons CO2e
- Possible Savings:
 - 10 metric tons * 3 * potential # of improvements * # of operators

The Challenges - The Problem of Standardization

- Reusable pieces
 - Estimation methodology... Might not hold up under scrutiny
- We need standards
 - Carbon reporting
 - Carbon Capturing/Calculation
 - Carbon Constants (.74 KgCO2e/lb)
- Possible solutions
 - Supply Chain & Order Domains
 - BOM's could be modified to provide more operating details for carbon-emitting parts
 - Emissions could be packaged by process, instead of by part for reduced complexity and greater scale

Standards

- Units
- Minimum reporting requirements

Thank you!

